Chemical identification of cysteine as palmitoylation site in a transmembrane protein (Semliki Forest virus E1).

نویسندگان

  • M Schmidt
  • M F Schmidt
  • R Rott
چکیده

The palmitoylation site of the membrane glycoprotein E1 of Semliki Forest virus (SFV) has been identified by chemical analysis of an acylpeptide. 3H-Palmitoylated E1 isolated from SFV grown in baby hamster kidney cells was digested with chymotrypsin and the resulting peptides subjected to high performance liquid chromatography on a wide-pore column. The 3H-acylated peptide fraction peaked at above 60% 2-propanol in the eluent, indicating its hydrophobic character. Polyacrylamide gel electrophoresis analysis revealed a molecular weight of about Mr = 6000 for the radiolabeled peptide. Manual sequencing of this material by the 4-N,N'-dimethylaminoazobenzene-4'-isothiocyanate/phenylisothiocyanate procedure on solid phase revealed the amino-terminal sequence Ala-Ala-Ser-His-Ser-Asn-Val-Val-Phe-Pro. The same peptide also labels with [35S]cysteine. Comparison with the deduced amino acid sequence of E1 revealed that the palmitoylated peptide contains at least 43 amino acid residues, and thus includes the membrane spanning region down to the only cysteine residue five positions up from the carboxyl terminus of E1. Since [3H]palmitic acid was cleaved from E1 with thiol reagents, and since the peptide labels with [14C]iodoacetamide only after the release of fatty acids by hydroxylamine treatment, cysteine in position 433 represents the palmitoylation site in SFV E1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations at the palmitoylation site of non-structural protein nsP1 of Semliki Forest virus attenuate virus replication and cause accumulation of compensatory mutations

The replicase of Semliki Forest virus (SFV) consists of four non-structural proteins, designated nsP1-4, and is bound to cellular membranes via an amphipathic peptide and palmitoylated cysteine residues of nsP1. It was found that mutations preventing nsP1 palmitoylation also attenuated virus replication. The replacement of these cysteines by alanines, or their deletion, abolished virus viabilit...

متن کامل

Site-directed antibodies against the stem region reveal low pH-induced conformational changes of the Semliki Forest virus fusion protein.

The E1 envelope protein of the alphavirus Semliki Forest virus (SFV) is a class II fusion protein that mediates low pH-triggered membrane fusion during virus infection. Like other class I and class II fusion proteins, during fusion E1 inserts into the target membrane and rearranges to form a trimeric hairpin structure. The postfusion structures of the alphavirus and flavivirus fusion proteins s...

متن کامل

Effects of palmitoylation of replicase protein nsP1 on alphavirus infection.

The membrane-associated alphavirus RNA replication complex contains four virus-encoded subunits, the nonstructural proteins nsP1 to nsP4. Semliki Forest virus (SFV) nsP1 is hydrophobically modified by palmitoylation of cysteines 418 to 420. Here we show that Sindbis virus nsP1 is also palmitoylated on the same site (cysteine 420). When mutations preventing nsP1 palmitoylation were introduced in...

متن کامل

fus-1, a pH shift mutant of Semliki Forest virus, acts by altering spike subunit interactions via a mutation in the E2 subunit.

Semliki Forest virus (SFV), an enveloped alphavirus, is a well-characterized paradigm for viruses that infect cells via endocytic uptake and low-pH-triggered fusion. The SFV spike protein is composed of a dimer of E1 and E2 transmembrane subunits, which dissociate upon exposure to low pH, liberating E2 and the fusogenic E1 subunit to undergo independent conformational changes. SFV fusion and in...

متن کامل

Properties of non-structural protein 1 of Semliki Forest virus and its interference with virus replication

Semliki Forest virus (SFV) non-structural protein 1 (nsP1) is a major component of the virus replicase complex. It has previously been studied in cells infected with virus or using transient or stable expression systems. To extend these studies, tetracycline-inducible stable cell lines expressing SFV nsP1 or its palmitoylation-negative mutant (nsP16D) were constructed. The levels of protein exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 35  شماره 

صفحات  -

تاریخ انتشار 1988